首页>>文献首页>>文献正文

Depth of investigation in electromagnetic sounding methods

cheese 添加于 2012/3/6 19:38:43  846次阅读 | 1次推荐 | 0个评论

The time or frequency at which the electromagnetic (EM) response of a buried inhomogeneity can first be measured is determined by its depth of burial and the average conductivity of the overlying section; it is relatively independent of the type of source or receiver and their separation. The ability to make measurements at this time or frequency, however, depends on the sensitivity and accuracy of the instrumentation, the signal strength, and the ambient noise level. These factors affect different EM sounding systems in surprisingly different ways.For the magnetotelluric (MT) method, it is possible to detect a buried half-space under about 1.5 skin depths of overburden. The maximum depth of investigation is virtually unbounded because of high signal strengths at low frequencies. Transient electromagnetic (TEM) soundings, on the other hand, have a limited depth of penetration, but are less affected by static shift errors. For TEM, a buried inhomogeneity can be detected under about one diffusion depth of overburden. For conventional near-zone sounding in which induced voltage is measured (impulse response), the depth of investigation is proportional to the 1/5 power of the source moment and ground resistivity. By contrast, if the receiver is a magnetometer (step response system), the depth of investigation is proportional to the 1/3 power of source moment and is no longer a function of resistivity. Magnetic-field measurements may, therefore, be superior for exploration in conductive areas such as sedimentary basins. Far-zone, or long-offset, TEM soundings are traditionally used for deep exploration. The depth of investigation for a voltage receiver is proportional to the 1/4 power of source moment and resistivity and is inversely proportional to the source-receiver separation. Magnetic-field measurements are difficult to make at long offsets because instrumental accuracy limits the measurement of the very slow decay of the magnetic field.Frequency-domain controlled-source systems are ideally suited for sounding at the very shallow depths needed for engineering, archaeological, and groundwater applications because of the relative ease of extending the measurements to arbitrarily high frequencies, and also because geometric soundings can be made at low induction numbers.

作 者:Brian R. Spies
期刊名称:
期卷页: 第卷 第期 页
学科领域:地球科学 » 地球物理学和空间物理学 » 应用地球物理学
添加人是否为作者:
原文链接:
DOI:
ISBN:
关键词:
备 注:
来自论坛的回复:
文献笔记

   
导出选项:

评论 (0 个评论)

Page 1 of 1
<<<[1]>>>

举报 | Archiver | 科学网( 京ICP备07017567 )

GMT+8, 2011-2-15 11:31

Powered by ScienceNet.cn

Copyright © 2007- 科学时报社