首页>>文献首页>>文献正文

Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

zhpd55 添加于 2017/6/14 7:16:46  130次阅读 | 0次推荐 | 0个评论

The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore's law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation.

作 者:Andrew Murphy, Dmitri V Averin, Alexey Bezryadin
期刊名称: New Journal of Physics
期卷页: Published 13 June 2017 第19卷 第期 063015页
学科领域:数理科学 » 物理学 » 基础物理学
添加人是否为作者:
原文链接:https://doi.org/10.1088/1367-2630/aa7331
DOI: 10.1088/1367-2630/aa7331
ISBN:
关键词: Little–Parks effect, nanoscale memory, nanowire SQUID, superconductivity, current-phase relationship, superconducting memory
全文地址: 下载
备 注: Developing a superconducting computer that would perform computations at high speed without heat dissipation has been the goal of several research and development initiatives since the 1950s. Such a computer would require a fraction of the energy current supercomputers consume, and would be many times faster and more powerful. Despite promising advances in this direction over the last 65 years, substantial obstacles remain, including in developing miniaturized low-dissipation memory. Researchers at the University of Illinois at Urbana-Champaign have developed a new nanoscale memory cell that holds tremendous promise for successful integration with superconducting processors. The new technology, created by Professor of Physics Alexey Bezryadin and graduate student Andrew Murphy, in collaboration with Dmitri Averin, a professor of theoretical physics at State University of New York at Stony Brook, provides stable memory at a smaller size than other proposed memory devices. The device comprises two superconducting nanowires, attached to two unevenly spaced electrodes that were "written" using electron-beam lithography. The nanowires and electrodes form an asymmetric, closed superconducting loop, called a nanowire 'SQUID' (superconducting quantum interference device). The direction of current flowing through the loop, either clockwise or counterclockwise, equates to the "0" or "1" of binary code.
文献笔记

 
导出选项:

评论 (0 个评论)

Page 1 of 1
<<<[1]>>>
发表评论:
验证码  
 

举报 | Archiver | 科学网( 京ICP备07017567 )

GMT+8, 2011-2-15 11:31

Powered by ScienceNet.cn

Copyright © 2007-2011 科学时报社